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Abstract--This work considers radiative heat transfer in a 2-D cylindrical scattering medium with Fresnel 
boundaries. The present analysis divides the radiative intensity into the attenuated incident and in-scattering 
components, solves the resulting problem of the former analytically, and that of the latter by the discrete- 
ordinate method (DOM). In addition, the present analysis rationalizes the distribution of the quadrature 
points used by the DOM to treat relevantly the strongly angular dependence of radiative intensity around 
the critical angles. Comparisons of the results obtained by the different methods show that the above 
techniques can improve the discrete-ordinate solutions. The present results reveal that the gradient of 
radiative heat flux in a cylindrical medium with Fresnel boundaries may vary abruptly at some locations. 
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1. INTRODUCTION 

Since Chandrasekhar [1] and Lathrop [2] pioneered 
the discrete-ordinate method (DOM), and then Five- 
land [3] applied the DOM to multi-dimensional radi- 
ative heat transfer, the DOM has become one of the 
most popular methods in the heat transfer community 
for solving radiative transfer problems involving scat- 
tering. This is because: (i) the DOM can be carried 
out to a high order and accuracy, (ii) the derivation 
of DOM scheme:~ is relatively simple, and (iii) the 
DOM is compatible with the finite-difference or finite- 
element schemes for convective-diffusive transport 
phenomena. In multi-dimensional problems, the 
DOM suffers from the ray effects which arise from the 
approximation of the angular distribution of radiation 
by a set of discrel:e ordinates [4, 5]. Most researchers 
attribute the ray effects to the geometry. In practice, 
angularly dependent transmission and reflection, such 
as Fresnel reflection, may also cause ray effects, 
because the Fresh.el reflection can also result in abrupt 
variations in the angular distribution of radiation. To 
remedy the ray effects, a new version of the DOM that 
rationalizes the 6istribution of the discrete ordinates 
has proved to be effective [6]. To apply the method, 
the integral over direction is split into integrals over 
several subintervals by the critical angle, and each 
subinterval uses a set of quadrature points. Through 
using the compo~,;ite quadrature, the composite DOM 
(CDOM) can take the intensity within each sub- 
interval adequately into account. In this work, the 
CDOM is further extended to solve multi-dimensional 
problems, where the geometry may also result in ray 

effects. Moreover, to remedy the ray effects due to the 
combination of geometry and Fresnel reflections, this 
work adopts a technique based on splitting radiation 
intensity into two parts. One of the two parts--the 
attenuated incident radiation---can be solved ana- 
lytically, and its moments can be evaluated accurately. 
To demonstrate the aforementioned techniques for 
remedies of ray effects, this work considers radiative 
heat transfer in a 2-D cylindrical medium with Fresnel 
boundaries. 

Recently, studies on almost every aspect of the 
DOM applied to multi-dimensional radiative heat 
transfer have been reported : the selection of discrete 
ordinates [7, 8], the improvement of spatial diff- 
erencing schemes [9, 10], remedies for ray effects [4, 
5], and applications to complex geometry [11, 12]. All 
of the above studies consider the reflectivities at the 
boundaries to be constant. However, in some engin- 
eering applications the angular dependence of reflect- 
ivity at boundaries may be important. Among these 
are optical windows, liquid optical filters and some 
solar collector devices. Therefore, this work aims at 
the improvement of the DOM for radiative heat trans- 
fer in a multi-dimensional medium with Fresnel 
boundaries. For the 2-D cylindrical problem 
considered, the effectiveness of the techniques pro- 
posed is examined, and the effects of the refractive 
index and the optical size are investigated. 

2. ANALYSIS 

Radiative heat transfer in an absorbing, iso- 
tropically scattering, 2-D cylindrical medium with 
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NOMENCLATURE 

a aspect ratio #, ~, q 
I radiation intensity or I~ in Section 3.2 
I, attenuated incident radiation by 

absorption and out-scattering #0 
la intensity of the diffuse incident #~ 

radiation /2~o, Psi 
I~ intensity caused by in-scattering 
Ld optical length defined in equation (12) p 
n refractive index of the medium 
Nr maximum number of reflections P0 
Nq number of Gaussian quadrature points 
q normalized radiative flux z 
Q total normalized axial heat transfer ZH 

rate 
S source function "['R 
Ss source function caused by in-scattering 

[equation (9)] q~ 
t Gaussian quadrature points o~ 
w Gaussian quadrature weights 
W,.m product quadrature weights. 

Greek symbols 
Azn optical distance between grid points in 

the axial direction 
AZR optical distance between grid points in 

the radial direction 
0 polar angle (Fig. 1) 
0g0, 0g~ polar angles defined in equations (11) 

and (13) 

directional cosines aligned with 
axial, radial and azimuthal axes, 
respectively 
directional cosine of incident angle 
directional cosine of critical angle 0~ 

directional cosines of effective angles 
0~0 and 0~, respectively 
reflectivity of radiation incident on the 
surroundings from the medium 
reflectivity for radiation incident on 
the medium from the surroundings 
optical coordinates 
optical size in the axial direction (Fig. 
1) 
optical size in the radial direction (Fig. 
l) 
azimuthal angle (Fig. 1) 
scattering albedo. 

Subscripts 
a attentuation 
m discrete ordinate for ~b 
n discrete ordinate for # 
r r-direction 
z z-direction. 

Superscripts 
+ ,  - -  positive and negative directions of 

propagation. 

constant properties is considered. The upper surface 
is exposed to uniform diffuse incident radiation. It 
is assumed that the emission from the medium and 
boundaries is negligible. A schematic diagram of the 
geometry and coordinates is shown in Fig. 1. The 
radiative transport equation can then be expressed as 

~ ~ 91 1 ¢3 
rr &r (~rh +/~ UZ~ ~r c~4~ (~tI) + I = s 

-- 1 -..< # ...< 1 0 ~ < ~ 2 ~ z  

(1) 

where I denotes the radiation intensity ; 4, r/and # the 
directional cosines defined by ( =  sin0cos~b, t /=  
sin 0 sin ~b and # = cos 0, with 0 and 4~ denoting the 
polar angle and the azimuthal angle, respectively; rr 
and z: the optical coordinates in the radial and axial 
directions, respectively, defined as the products of geo- 
metric coordinates and extinction coefficient of the 

medium; z~ and r~ the optical radius and height, 
respectively ; and S the source function, defined as 

S( '~ r ,  "~z) = - -  I("~r,  rz, #' ,  qY)d#' dq~' (2) 
4~r 3,,=0 _ ~  

where o is the scattering albedo defined as the scat- 
tering coefficient divided by the extinction coefficient. 
The subscript v, which denotes the spectrally depen- 
dent properties of the medium and boundaries, is 
omitted to simplify the mathematical expression. 

Here, we consider the medium to be a dielectric 
material with its suspension of particulates, and the 
refractive indices of the upper and lower surroundings 
are assumed to be unity. The upper and lower inter- 
faces are assumed to be optically smooth, so that the 
reflections and transmission are governed by Fresnel's 
equation and Snell's law. The side wall is assumed to 
be non-reflecting for simplicity of demonstration. If 
the lateral surroundings are opaque and black, the 
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(a) "1:, 

"I; H 

I d 

P (X,,x, ) 

(b) 

Fig. 1. Geometry and coordinates: (a) front view, (b) top 
view. 

non-reflecting condition may hold. For  example, 
either the bottom or side wall of a basin-type solar 
collector can be treated as a non-reflecting boundary. 
Hence, the boundary conditions can be expressed as 

I (%,  z . ,  - -  # ,  ~b) 

= n2Id [1 - P0 ( -  #0)1 + p(u)I(z,, ZH, #, ~) 

O~<zr~<ZR 0--%#--.<1 0 ~ < t ~ < 2 ~  

(3) 

l ( r .0 ,#,q~)  = p(jOl(z.O, -#,c~) 0 <<. rr <<. "~R 

0 --.< # -.< 1 0 ~< ~b ~< 2re (4) 

I(rR,~.#,~b) = 0 0 ~ < z ~ < z .  

-1~<#~<1 n / 2 ~ < 3 ~ / 2  (5) 

where n is the refractive index of the medium, Id the 
intensity of the diffuse incident radiation, #0 the direc- 
tional cosine of the incident angle in the surroundings, 

and p0 and p the interface reflectivities for radiation 
incident on the medium from the surroundings and 
that for radiation incident on the surroundings from 
the medium, respectively. The value of the reflectivity 
is unity for I # [ < #o where #c = x / i  - 1/n2 is the 
directional cosine of the critical angle. 

Since equations (1)-(5) are linear, the problem can 
be readily split into two simpler problems [13-15] by 
dividing the intensity into two components, I,  and I~ ; 
that is 

l(z,z: ,#,q~) = Ia(zr, z:,#,c~)+Is(%,z.,#,d?). (6) 

Physically, I,  is the attenuated incident radiation by 
absorption and out-scattering, and I~ is caused by in- 
scattering. Here, the governing equation for I,  can be 
expressed as 

~ ~ 01 a 1 6 ~ 
~zr (ZrI,) + # (r/l,) + I, = 0 (7) 

rr &~ r~ 0~ 

and the boundary conditions for Ia are the same as in 
equations (3)-(5) except for replacing I with/~. The 
above problem for Ia can be solved analytically. Sub- 
tracting equation (7) from equations (1) and (2), we 
obtain the governing equation for L expressed as 

ZrOZr('CrIs)+#~ Z r O ~ ( t l l s ) + I s : S = S s + S a  

O ~ ' r  ~ Z  R 0~ 'gz  ~ T  H 

- 1 -..< # -..< 1 0~< ~b ~<2~ (8) 

where 

O) 12~ (, 
SalT. z..) = -  J -"  /~(%, z-, #', qY)d#' dqY 

(9) 

= la (Zr, Z:, #', qY)d#' d~b'. S.(zr, r~) ~ '=0 , 

(10) 

The boundary conditions for L are also the same as 
in equations (3)-(5) except for replacing I with/s and 
removing the incident term [i.e. the first term on the 
right-hand side of equation (3)]. 

Exact solution of the problem for/~a and the associ- 
ated accurate calculation for the moments of Ia, such 
as Sa, are crucial for the discrete-ordinate solutions of 
a multi-dimensional transfer problem. Either the ray- 
tracing technique or the image method [16] can be 
applied to treat the Fresnel reflections at the upper 
and lower interfaces, which yield an infinite number 
of images in the %-direction, as shown in Fig. 2. Simi- 
lar to the evaluation of specular view factors, the 
calculation of the attenuated part of the incident radi- 
ation, la, must take the contribution for each possible 
direct or reflection path into account. The path may 
be traced back to each possible entry point where 
the external radiation enters the medium, and Ia with 
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Fig. 2. Cross section of a medium with images at specified r~ 
and ~b. 

reflections may be treated as that from the images of 
an entry point to the point considered, as shown in 
Fig. 2. If n = 1.0, the intensity [d appears only within 
n-0go  ~< 0 ~< ~z. From geometric relations, 0g0 can be 
expressed as 

0g0(z~,'L, ~b) = tan--l[Ld/(rH--%)] (11) 

where 

L d = 4l"2--'C 2 sin 2 ~b+% cos ~b. (12) 

Furthermore, if n ¢ 1.0, the intensity arriving is lim- 
ited within the critical angle 0~, because of the refrac- 
tion at the interface. Therefore, ifn ~ 1.0, the intensity 
I,  with # < 0 appears within n -  0~0 ~< 0 ~< n, where 0~0 
is the effective angle defined as 0~0 -- min (0~0, 0D, and 
the intensity L~ wi th /~>0  appears within 0 ~ 0 ~< 0~, 
where 0~ is the effective angle defined as 0~ = min 
(0g~, 0D, with 

0gl(r ,z: ,  ~b) = tan--l[Ld/(rH+%)]. (13) 

The contribution of radiation from each entry point 
is equal to the incident intensity multiplied by the 
interface transmissivity, the interface reflectivity of 
every reflection, and an exponential decay term due 
to extinction over the traveling optical distance. Thus, 
the intensity along a ray path may be expressed as a 
sum of the contributions of the incident intensity at 
each entry point on the ray path. For  the present case, 
the reflection may not  be infinite because of the non-  
reflecting side wall, except for 00 = n. Therefore, the 
intensity la(Z,, "Cz, #, ~)) can be expressed as 

= hn2[1 - p o  (-/,o)]p(it)e-{~- -~ , ,  

1 - [p2(/~) e 2~w,]{u,+ t);2 
x /~, (40 ~< ~ ~< 1 

1 - p2 ( p )  e -  >":' 

04 )  

/a(G, "C-,/1, q~) = Idn2[1 --P0(--#0)] e (~"-~:)/" 

1 -- [pZ([/~ l) e2Wq N/2+ 1 
x -- 1 ~< # ~< --p~o(q~) 

1 - p Z ( l  p I) e2""/~ 

(15) 

where N~ is the maximum number  of reflections deter- 
mined by 

N r = 1+2  [ - L d - - ( r . + % ) t a n 0 ]  
| 2z.  t a n 0  | ~ ,  (4,) ~< ~ ~< 1 

(16) 

F t d  - -  (zH - -  Z:) I tan 01 
N ~ = 2 /  2 ~  ] 

--1 ~<p~<-~q0(~b). (17) 

Here, the operator [- • ] in equations (16) and (17) 
means taking the greatest integer less or equal to the 
operated value. If  there are no specular reflections on 
the boundaries, Nr = 0. Thus, Nr = 0 for a medium 
with n = 1.0. 

3. NUMERICAL SOLUTION 

3.1. Calculation for S~ 
Using the DOM, we approximate the moments of 

intensity over a full or half range by the weighted sums 
of the intensity at a set of  discrete ordinates. When 
the distribution of radiation intensity over direction 
has a discontinuity or abrupt  variation, the ray effect 
causes serious errors. It is worth noting that splitting 
the angular range into several subintervals with con- 
t inuous distributions of intensity, and applying one 
set of quadrature points to the integration over each 
of the subintervals can improve the results [6]. Thus, 
we may expect that applying such a splitting technique 
to the evaluation of Sa and other moments of intensity 
can remedy the ray effect and improve discrete-ordi- 
nate solutions. 

The geometry of the medium and the refraction 
of the incoming radiation result in the discontinuous 
distribution or abrupt  variation of intensity /d at 
n -0s0  and 0sl. In addition, the two factors and the 
multiple specular reflections at the upper and lower 
interfaces result in more abrupt  variations of intensity 
over directions. Fortunately,  the abrupt  variations 
due to multiple reflections are minor because of the 
exponential decay of Ia. Therefore, we consider only 
the abrupt  variations of intensity at n -0s0  and 0sl, 
and apply a set of  Gaussian quadrature points to 
each of the two effective ranges n -0s0  ~< 0 ~< n and 
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0 ~< 0 ~< 0~. The Gaussian quadrature is adopted, 
because it can generate highly accurate results. 

Because of the symmetry characteristics, it is 
sufficient to consider just (0, n) in the 4)-direction. The 
4)-direction is split into two subintervals, (0, n/2) and 
(n/2, ~z), and then each subinterval uses a set of Gaus- 
sian quadrature points. The Gaussian quadrature 
points used in each subinterval of 0 and 4) are the 
same. Therefore, the discrete-ordinate formulation of 
equation (10) expressed in product formula is written 
as 

O) 2Nq Nq 

x {[1 --.,O(4)m)]/~ ['C. z., .,~- (4).), 4).] 

+[1--Gl(4),.)]Ia[v,,.:, ,+(4).),4),.1} (18) 

where 

4),. = (n t r .+n) /4  form = 1 . . . . .  Nq (19) 

4)m = l'~12"+-4)m-Nq form = N q + l  . . . . .  2Nq (20) 

with 

2Nq 3Nq 
~o I 

S = Sa-~- ~m~l  n~l Wn',rn' n',ra' (24) 

Wn,,m, =-~(l-- .c)Wn, W m, forn = 1 . . . . .  Nq, 

2Nq+l  . . . . .  3Nq and m = l  . . . . .  2Nq (25) 

7Z 
W..m,=-~.~W..Wm. forn = N q + l  . . . . .  2Nq 

and m = l  . . . . .  2Nq (26) 

where S, is generated by equation (18). The boundary 
conditionsare expressed in a discretized form as 

I3G/2+.,,. = P(I "3Nql2 +n I)I3N .i2 + l . . . .  

"3NqlZ+n < 0 "~z = " .  (27) 

In,m = p ( . n ) I 3 N q + l  . . . .  "n > 0 rz = 0 (28) 

. 2  (4)..) = - {[1 -.~0(4)m)lt. +.~0(4)~) + 1}/2 

for n = 1 . . . . .  Nq (21) 

"n -I- (4)m) = i~[ 1 - - "s ,  (4)m)]tn -}""sl (4)m) + 1} I2  

for n = 1 . . . . .  Nq. (22) 

Here, the subscripts m and n represent the discrete 
ordinates for 4) a n d . ,  respectively ; Nq is the number 
of Gaussian quadrature points ; w denotes the quad- 
rature weights cow,responding to the Gaussian quad- 
rature points t; and .~0(4),.) and ,~ff4),.) are the direc- 
tional cosines of t]he effective angles on the plane with 
4) = 4)m. The othe~ moments o f / .  will be calculated in 
a similar way. 

3.2. Discrete-ordinate form 
We now extend the CDOM [6] technique to a 2- 

D cylindrical problem with Fresnel boundaries. The 
product formula seems to be straightforward for a 2- 
D problem. The integral over ( - 1 ,  1) f o r ,  is split 
into integrals ow:r several subintervals: ( - 1 , - . c ) ,  
( - # c ,  .c) and (Pc, 1). The integral over the 4)-direction 
is split into two subintervals : (0, hi2) and (n/2, n). The 
integral over each subinterval uses a set of Gaussian 
quadrature point:s. 

By omitting the subscript s of I,, the discrete-ordi- 
nate representation of equation (8) can be written as 

~-z2 ( , ' ' l " ' m ) + "  ~z~ z.O(o(rl.,ml...,)+I.,,. = S  

n - - 1  . . . . .  3Nq m =  1 . . . . .  2Nq (23) 

where 

l n ,m=In ,m , ~ n , m > O  ~,.m,<0 Z , = 0  (29) 

In,Nq+m = 0 ~n,Nq+m < 0 Z. = ZR. (30) 

Applying the weighted diamond differencing sch- 
eme to the spatial derivatives in equation (23), the 
final discretization equations can be written for each 
sweep direction. Details of the theory and solution 
technique are available in ref. [17]. The solutions can 
be performed iteratively by sweeping through each 
direction with the boundary conditions, equations 
(27)-(30). The iterative procedure is continued until 
the maximum relative difference between two suc- 
cessive calculations of incident radiation at each cell 
center is less than 1 × 10 -6. 

After determining the intensity, we can obtain the 
radiative fluxes just leaving the upper surface, q+ 
(z,,zn), just leaving the lower surface, qT(,,,0), 
toward the side wall q~+ (ZR, ' : ) ,  and the net axial radi- 
ative fluxes in the medium, q:(z.., z.), from their quad- 
rature approximations 

= z w.p0/ -)Cr- ) 

1 2 Nq Nq / 
" J - -  Z Wm E Wn~[1--"sl(4)m)] 

41d m= l n=l 

X la[.r. ZH. #+ (4)m). 4)ml 

X {1 - -p [ , n  + (4)m)]}, + (4)m)/ 

1 2Nq 3Nq/2 

-If- ~ y l  n~--I Wn'm[1-- P("n)]ln'm('r' "I-l)"n (31) 
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1 2Nq Nq 
qj  (z,, O) = 4Id ,,_~1 w,,, ~ w, n=l 

X {[l --]AsO((~m)]/af~r, O, ]A~ (~)m), ff~m] 

1 2Nq 
x {1 - P [ I  lay (~b,,,)I]}]Ag- (~b,,,) - ~-~d .~ ,  

3N~ 
x ~ W..m[1 - p ( I  ]A. I)]I...,(~,, O)]A. 

n=3Nq/2+l 

1 ~ Nq 
q+ ('t'R' Z'z) = ~ m ~ -  -']= Wm COS q~m .=lZ w, 

× {[1 --]AsO(~m)]Ia[~'R, "Cz, ]A n (~m), ~)m] 

X 4 1  --  []An- (~bm)] 2 "J- [l  - - ] A s l  (~m)] 

× , j l  -[]A~(~)I ~ + F~ 

3N~ 

n = l  

1 2N N 

(32) 

(33) 

(a) 
1.25 

1.00 

% 
0.75 

0.50 

0.25 0 ' 

: Product formula, Nq = 2 

~ ; S  6 

11 i i ) 21 , ) , ~,~ t I i ~. i i i 5 

17 R 

(b) 0.20 

0.15 

0.10 

0.05 

0.00 

- -  : Product formula Nq = 2 

~ ~onte Carlo [15] 

0 1 2 3 

~R 
Fig. 3. Effect of 'c  R and ~o for a = 1.0 on the total normalized 
axial heat transfer rate: (a) at upper surface, (b) at lower 

surface. 

X { l1 -- #s0((~m)]la [~'r, "Cz, #n- (~m), (~m]]An- (~rn) 

-'~ [1 --]Asl ((~m)]/a [Tr, "t'z, ~/n + (~m), q~m]]An + ((~m)} 

l 2Nq 3Nq 
(34) 

The above quantities are normalized by 7rla. The first 
term on the right-hand side of equation (31) is the 
direct reflected portion of the external incident radi- 
ation. 

4. RESULTS AND DISCUSSION 

To examine the validity of the DOM using the prod- 
uct formula, a special case with n = 1.0 and a = 1.0, 
where a is the aspect ratio defined as a = 2rR/rH, is 
considered. The DOM results are obtained by using 
the product formula with Nq = 2 in each of the two 
subintervals, ( -  1,0) and (0, 1), and by using discrete 
ordinates for the S6-approximation [18]. Comparisons 
of the results with different grid sizes and quadrature 
orders show that the following choice is valid for this 
problem: (a) A~R = A~H = 0.001 for ~R = 0.01, 
(b) AZR = A t .  = 0.01 for ZR = 0.1, (C) AZR = ArH 
= 0.025 for 0.1 < ZR < 0.5, (d)AzR = Arn = 0.05 
for 0.5 ~< rR < 1.5, (e) AzR = AZH = 0.1 for zR /> 
1.5. In addition, except for additional mentions, the 
intensity is divided into I, and L in the computation 

performed. Figure 3(a) and (b) shows the total nor- 
malized axial heat transfer rates for the upper surface, 
Q~(vH), and the lower surface, Qz(0), respectively, for 
various scattering albedos. Q~(zH) and Q~(0) are deter- 
mined from 

_ 2 I~R q[ (zr, "rH)'r, dzr (35) Qz(z . )= l ~2 Jo 

Q.(O) = z~Jo q2(zr, O)zrdzr. (36) 

As seen from Fig. 3(a) and (b), the results obtained 
by both versions of DOM are very close to those by 
the Monte Carlo method [15]. 

Table 1 shows that the solutions obtained by three 
DOM schemes, including the DOM using SN discrete 
ordinates, the double DOM using the product formula 
and two subintervals, ( - 1 , 0 )  and (0, 1), and the 
CDOM using the product formula and three sub- 
intervals, ( - 1 , - # ~ ) ,  (-]Ao, Pc) and (]At, 1). The three 
schemes use AZR = A~H = 0.05. Comparisons of the 
results shown in Table 1 indicate that the 2-D solu- 
tions with a = 30 are close to the 1-D solutions [19]. 
Moreover, the results obtained by the CDOM using 
the product formula and three subintervals mon- 
otonically approach those of the I-D planar, as Nq 
increases, and the accuracy of  the CDOM even using 
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Table 1. Comparison of results generated by the three sch- 
emes for TH = 1.0, a = 30 and n = 1.5 with those of the 1-D 
planar [19]: SN approximation (a), product formula with 
two subintervals for V (b), and that with three subintervals 

for/~ (c) 

( a )  

SN 

09 = 1.0 09 = 0.5 

q~(OZH) qz(O,O) q~+(O, Zn) q~-(O,O) 

$4 0A.1339 0.59023 0.15125 0.34038 
$6 0.40171 0.59225 0.11522 0.30967 
$8 0.4.1070 0.59267 0.13639 0.32761 
I-D [19] 0.z;2033 0.57967 0.13909 0.30695 

(b) 

~V. 

to = 1.0 ~ = 0.5 

q~ (0, 7:H) q7 (0, O) q+ (0, zH) q; (0, O) 

3 0.42117 0.57850 0.14440 0.31152 
5 0.42219 0.57759 0.14967 0.31601 
8 0.42121 0.57850 0.14522 0.31228 
I-D [19] 0A2033 0.57967 0.13909 0.30695 

(c) to = 1.0 to = 0.5 

Nq q~+ (0, ZH) q;  (0, 0) q[ (0, ZH) q;  (0, 0) 

2 0.41914 0.58042 0.13957 0.30770 
4 0.41979 0.57975 0.13922 0.30719 
6 0.41997 0.57957 0.13914 0.30707 
I-D [19] 0.42033 0.57967 0.13909 0.30695 

Nq = 2 is better than that of  other schemes with higher 
quadrature orders. 

Next,  we examine the effectiveness of  separating I 
into I,  and I~. The results obtained by the C D O M  
without separating I are compared with those 
obtained by the C D O M  after separating I by using 
Nq = 6, as shown in Fig. 4(a). The results shown are 
obtained by using A~R = AzH = 0.05. As expected, the 
results obtained without separating I oscillate about  
those obtained after separating L When Nq increases, 
the frequency of  the oscillations becomes higher and 
the magnitude becomes smaller. In addition, the 
results obtained after separating I for Nq = 2, 4 and 6 
almost overlap each other, as shown in Fig. 4(b). The 
CPU time required to obtain the results for Nq = 2, 4 
and 6 by using the scheme with separating I is about  
6.1, 47.7 and 188.4 s, respectively, on a HP 715/64 
workstation. It is worth noting that the C P U  time 
required to obtain the results without separating I by 
using Nq = 2, 4 and 6 is about  4.4, 64.3 and 361.6 s, 
respectively. Consequently, it is effective to remedy 
the ray effects from C D O M  by dividing I into two 
components  and accurately calculating the moments 
Ofla. 

Now, we turn tc investigate the effects of  the refrac- 
tive index n and the aspect ratio a. The results shown 
in Figs. 5 and 6 for o~ = 1,0 and ZR = 0.5 are obtained 
by the C D O M  using N q  = 2 and AZR = AZH = 0.02. n 
determines the interface reflectivity and transmissivity 
at the upper and lower boundaries;  the combinat ion 
of  n and a determines the effective angles of  Ia. Figure 

(a) 
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t-~ 0.2 

0.1 I,~ 
0.0 

. . . . . . .  : Without separating I 
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I I , I  I 

0.2 0.4" 0.6 0.8 1.0 
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Fig. 4. Comparison of solutions for various orders of Nq, 
zn = 1.0, a = 1.0, to = 1.0 and n = 1.5: (a) without sepa- 

rating L (b) after separating L 

5(a) and (b) shows the variation of  -q~(O, zz) and 
q+(ZR, Zz) with respect to zz. Al though multiple 
internal reflections in a medium with n > 1.0 make 
the variation of  - q.(0, z,) and q~+ (ZR, Zz) even, the 
effective angle 0~0 = min (0g0, 0c) changes from 0g0 to 
0c at a certain location. Thus, there is a kink at the 
location, where 0~0 changes from 0~o to 0¢ in each of  
the curves of  -q : (0 ,zz )  for n = 1.5 and 2.0 with 
a = 0.2 and 1.0, as shown in Fig. 5(a). This change of  
0s0 represents an abrupt variation of  the contribution 
of  the external incident to - qz(0, zz). For  a = 5.0, 0s0 
is equal to 0c at any location on the axis for n = 1.5 
and 2.0, and so there is no kink on their curves. The 
effect of  internal reflections increases as n increases. 
Figure 5(b) shows that the q~+ (ZR, Z~) increases, as z~ 
increases, and reaches the maximum at the upper 
surface, where external radiation enters the medium. 
Moreover ,  Fig. 5(b) indicates that the q~+ (ZR, Z~) near 
the upper surface for the medium with n = 1.0 is much 
greater than that for the other two media. This is 
because, for a medium with n = 1.0, 0~o is always equal 
to 0g0 and is much greater than 0,o = 0c for the two 
media with n = 1.5 and 2.0 as r~ is greater than a 
certain value determined by n and a. 

Figure 6(a) shows that q+ (z ,  Zn) increases with the 
decrease in a for a medium with n = 1.0. This is 
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Fig. 5. Effects of n and a on the radiative fluxes for rR = 0.5 and ~o = 1.0: (a) --q:(0, z:), (b) q~+ (rR, z-). 
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Fig. 6. Effects of n and a on the radiative fluxes for TR = 0.5 and eJ = 1.0 : (a) q:+ (z,, ZH), (b) q2 (zr, 0). 

because q:+ (z,  T.) resulting purely from multiple scat- 
tering increases with the increase in the optical thick- 
ness for a medium with n = 1.0. The results for n = 1.5 
and 2.0 do not show the same tendency, since both 
multiple scattering and multiple internal reflections 
contribute to q:+ (Tr, TH). In addition, since the con- 
tribution of  the direct reflection of  the external inci- 
dent radiation dominates q.+ (Zr, "rn) for n = 1.5 and 
2.0 and increases with n, q=+ (rr, ZH) for n = 2.0 is larger 
than for n = 1.5, as shown in Fig. 6(a). 

Figure 6(b) indicates that q .  (z,, 0) decreases with 
the decrease in a. The values of  q7 (z,  0) approach 
zero for the cases with a = 0.2. This is because most 
of  the radiation is scattered out of  the side wall of  a 
tall cylinder before reaching the lower surface. We 
then examine the curves of  q7 (zr, 0) for a = 5.0. For  
locations around the axis, 0,0 = 0g0 in a medium with 
n = 1.0 is much greater than 0s0 = 0¢ in a medium with 

n = 1.5 or 2.0. Al though la is proport ional  to n 2, the 
total contribution of  Ia over the effective angle to 
radiative transfer in a medium with n = 1.5 or 2.0 is 
less than that to radiative transfer in a medium with 
n = 1.0. Thus, q7 (zr, 0) decreases with the increase in 
n. However,  when rr becomes large, 0,0 = 0g0 in a 
medium with n = 1.0 is not  much greater than 0s0 = 0¢ 
in a medium with n = 1.5 or 2.0. Thus, the qS--r,, curve 
for n = 1.0 crosses over that for n = 1.5 or 2.0, as 
shown in Fig. 6(b). As for a = 1.0, the values of  q~ 
(z,, 0) increase with n, except at locations very close to 
the side wall. The reasons are similar to those for the 
curves for a = 5.0. Moreover ,  large variations in the 
slopes of  the q:'cr curves appear for n = 1.5 and 2.0, 
as shown in Fig. 6(b). This is due to the abrupt change 
in 0s0 from 0c to 0g0, where 0~ depends on n and 0~0 
depends on ~b, a and z~. This tendency is significant 
for an optically thin case (a = 5.0). 
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5. CONCLUSIONS 

This work considers radiative heat transfer in a 2- 
D cylindrical participating medium with Fresnel 
boundaries. The geometry of  the medium and the 
interface transmissivity at Fresnel boundaries result 
in a discontinuity or an abrupt  variation in the dis- 
tribution of  radiative intensity over directions. To 
remedy the ray effects, the present analysis divides the 
radiative intensity into the attenuated incident and in- 
scattering components,  solves the resulting problem 
of the former analytically, and that of  the latter by 
the CDOM.  Based on the comparisons of  the results 
obtained by different methods, it is shown that the 
above techniques (:an improve the discrete-ordinate 
solutions. The present results reveal that the radiative 
heat flux in a cylinrrical medium with Fresnel bound- 
aries may have al:,rupt variations in slope at some 
locations. Those locations depend on the refractive 
index and geometry. 
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